Ústav fyziky materiálů AV ČR, v. v. i. > Seznam projektů > Řešené a ukončené projekty

Řešené a ukončené projekty

Administraci projektů od návrhu až po konečnou fázi zajišťuje projektový tým

Řešené projekty


Tailoring ODS materials processing routes for additive manufacturing of high temperature devices for aggressive environments (topAM)

Europe’s industry is facing many challenges such as global competition and the big change towards energy and resource efficiency. topAM can contribute to these demands by development and application of novel processing routes for new oxide-dispersoid strengthened (ODS) alloys on FeCrAl, Ni and NiCu basis. Novel ODS materials offer a clear advantage for the process industry by manufacturing e.g. topology-optimized, sensor-integrated high temperature devices (gas burner heads, heat exchangers) that are exposed to aggressive environments. Alloy and process development will be targeted by an advanced integrated computational materials engineering (ICME) approach combining computational thermodynamics, microstructure and process simulation to contribute to save time, raw materials and increase the component’s lifetime. Physical alloy production will be realized by combining nanotechnologies to aggregate ODS composites with laser-powder bed fusion and post-processing. The ICME approach will be complemented by comprehensive materials characterization and intensive testing of components under industrially relevant in-service conditions. This strategy allows to gain a deeper understanding of the processmicrostructure- properties relationships and to quantify the improved functionalities, properties and life cycle assessment. This will promote cost reduction, improved energy efficiency and superior properties combined with a significant lifetime increase. The consortium consists of users, materials suppliers and research institutes that are world leading in the fields relevant for this proposal, which guarantees efficient, high-level, application-oriented execution of topAM. The industrial project partners, in particular the SMEs, will achieve higher competitiveness due to their strategic position in the value chain of materials processing, e.g. powder production, to strengthen Europe's leading position in the emerging technology field of AM in a unique combination with ICME.

Vlastnosti nanoprášků připravených pulzním elektronovým svazkem při nízkém tlaku plynu

Navrhovaný projekt je zaměřen na základní materiálový výzkum s přesahem do aktuálních medicínských aplikací. Vývoj nových farmaceutických produktů na bázi nanočástic je horkým tématem současného nanomateriálového výzkumu zejména s ohledem na nedávná zjištění vážné toxicity některých dosud používaných nanočástic kovů a možnosti jejich účinné a bezpečnější náhrady nanočásticemi jejich oxidů. Jedná se zejména o Ce02 pro radiační onkologii, Gd2O3 a MnO jako kontrastní látky MRI, ZnO a TiO2 jako protinádorová činidla, Al2O3 a AgO jako antibakteriální činidla a Fe3O4 / yFe2O3 pro hypertermickou léčbu nádorů. Unikátní vlastnosti nanočástic jsou podmíněné jejich velikostí, tvarem, ale i kvalitou povrchu (vakancemi a povrchovými defekty), které jsou formovány v procesu přípravy. Proto navrhujeme provést obsáhlý experimentální i teoretický výzkum vybraných nanoprášků oxidů kovů připravených pomocí patentované fyzikální metody, umožňující optimalizovanou syntézu nanoprášků s povrchovými defekty, čímž lze dosáhnout vyšší reaktivity a zvýšené biologické aktivity.

Structural Integrity and Reliability of Advanced Materials obtained through additive Manufacturing

In spite of the growing importance of Additive Manufacturing (AM) technology for producing both plastics and metals parts used in different fields such as aeronautics, biomechanics and automotive, the criteria and methods for the safety evaluation of AM components are still not well established. Therefore, the lack of knowledge on the influence of the material quality on the load bearing capacity of the final product hinders the industrial exploitation of AM, preventing this powerful technology from being confidently used in every-day manufacturing processes, in particular in low developed European countries. The overall objective of the SIRAMM project is to significantly strengthen research in the AM field at the Polytechnical University of Timisoara (UPT, Romania). To achieve this aim, SIRAMM will build upon the existing science and innovation base of UPT, creating a network with two internationally-leading counterparts at EU level: Norwegian University of Science and Technology (Norway) and the University of Parma (Italy). In the long term, the project aims at laying the foundations for creating a pole of excellence on AM in Eastern Europe. For this reason, other two partners from low R&I performing countries, the University of Belgrade (Serbia) and the Institute of Physics of Materials, Academy of Sciences (Czech Republic) will also take part in this Twinning project. To reach its goals, this 3-year project will be focused on the implementation of knowledge transfer activities such as workshops and staff exchange, training events (i.e. summer schools, seminars) for early stage researchers, and dissemination and communication actions (i.e. web site, videos, open access publications, public engagement activities) for different audiences. To keep maintaining the knowledge transfer well beyond the duration of this project, a regular master course on AM technology will be also implemented in the coordinating institution.

Innovative approach to improve fatigue performance of automotive components aiming at CO2 emissions reduction (INNOFAT)

Cars are responsible of 25% of CO2 emissions in the EU. To reduce these emissions, EU established a mandatory target, to be reached in 2020, of 95 g CO2/km (30% lower than the average CO2 emissions in 2012). Vehicle lightweight is the main alternative to reduce CO2 emissions. Crankshaft is the heaviest special steel component in a vehicle. So, its weight reduction potential is high. The crankshaft downsizing must be performed taking into account that engine torque cannot be reduced. So, if crankshaft is downsized, the steel fatigue limit must be increased to guarantee the required crankshaft in-service performance. This INNOFAT project is focused on crankshafts manufactured with microalloyed steels, but the obtained results may be extrapolated to other automotive components (camshafts, gears, common-rails...). Two different approaches are considered to improve the component fatigue performance: 1) steels with improved isotropy and 2) steels with higher strength. In the first case, different isotropy levels will be evaluated to determine which of them leads to the best fatigue performance. The second approach is based on a new high strength microalloyed steel (UTS>1.050 MPa) up to now only manufactured at laboratory scale. Along the INNOFAT project, the crankshafts manufacturing process (from hot forging to different machining operations) will be studied at laboratory scale. Finally, the most suitable steel from each approach will be chosen to manufacture and test real crankshafts in order to estimate the weight reduction that could be achieved. At the end of the project, some guidelines will be elaborated in order to facilitate the industrial implementation of the developed steels.

Ukončené projekty

Zobrazit

Řešené projekty


Energeticky úsporná opatření ÚFM AV ČR, v. v. i. zejména budovy dílen a elektronové mikroskopie

Na Ústavu fyziky materiálů AV ČR, v. v. i. byl úspěšně zahájen projekt "ENERGETICKY ÚSPORNÁ OPATŘENÍ ÚFM AV ČR, v. v. i. ZEJMÉNA BUDOVY DÍLEN A ELEKTRONOVÉ MIKROSKOPIE". V rámci realizace projektu dojde k energeticky úsporným opatřením, zejména zateplení obvodového pláště budovy dílen a elektronové mikroskopie, výměně otvorových výplní, instalace nové vzduchotechniky a modernizaci osvětlení. Součástí projektu je rovněž vybudování FVE na hlavní budově.


Mezinárodní mobilita pracovníků ÚFM

Projekt je zaměřen na posílení mezinárodní spolupráce a rozvoj hlavně juniorských vědeckých pracovníků Ústavu fyziky materiálů AV ČR, v. v. i. Realizace projektu přispěje k posílení kooperace s významnými výzkumnými organizacemi a jejich vědeckými a vedoucími pracovníky. Uskutečnění jednotlivých mobilit přispěje k rozvoji nejen samotných účastníků, ale celého pracoviště ústavu. Současně lze očekávat vyšší publikační činnost a zapojení ústavu do příprav a řešení mezinárodních projektů.


Výzkum a vývoj technologií přesného lití žárových částí leteckých motorů a vysoce náročných odlitků

Projekt řeší problematiku zavedení pokročilé technologie přesného lití žárových částí leteckých motorů a odlitků axiálních kol turbodmychadel. Spolehlivost a vysoká životnost odlitku, je do jisté míry determinována tolerancí materiálu k povrchovým defektům, které se mohou při provozu objevit. V projektu se tedy budeme hlouběji zabývat souvislostí mezi strukturou materiálu, povrchovými defekty a únavovým a creepovým poškozením.


Materiály s vnitřní architekturou strukturované pro aditivní technologie (ArMAdit)

Projekt je založen na výpočtovém návrhu a postupné optimalizaci parametrů vnitřní architektury dvou či více kovových materiálů s ohledem na jejich extrémní zatěžování včetně reálných provozních podmínek. Pro přípravu těchto vnitřně strukturovaných materiálů bude využita technologie studené kinetické depozice (CS, Cold Spray) a multimateriálového selektivního laserového 3D tisku (SLM, Selective Laser Melting), popřípadě kombinace obou.


Ukončené projekty

Zobrazit

Řešené projekty



ČísloNázevŘešitel
21-24805S Řízení rozhraní v bezolovnatých feroelektrických-dielektrických kompozitech pro zlepšení jejich elektromechanických vlastnostíIng. Zdeněk Chlup, Ph.D.
21-08772S Vliv samovyhojovacích účinků na prodloužení životnosti konstrukcí vyrobených z vysokohodnotného betonudoc. Ing. Stanislav Seitl, Ph.D.
21-02203X Vylepšení vlastností současných špičkových slitinRNDr. Jiří Svoboda, CSc., DSc.
20-16130S Multifunkční vlastnosti práškovaných intermetalických slitin Ni-Mn-SnMgr. Martin Friák, Ph.D.
20-00761S Vliv materiálových vlastností korozivzdorných ocelí na spolehlivost mostních konstrukcídoc. Ing. Stanislav Seitl, Ph.D.
20-11321S Vliv mikrostruktury a povrchových úprav na absorpci vodíku v bio-kompatibilních slitináchprof. RNDr. Antonín Dlouhý, CSc.
20-20873S Vývoj ODS ocelí odolných účinkům tekutých kovů pro využití v nových systémech v oblasti jaderného štěpení i fúzeIng. Hynek Hadraba, Ph.D.
20-14450J Vývoj porušení v ultrajemnozrnných kovech a slitinách při únavovém a creepovém zatěžováníIng. Jiří Dvořák, Ph.D.
20-14237S Zlepšení mikrostruktury a funkčních vlastností transparentních keramik pomocí distribuce dopantů - kombinovaný experimentální a teoretický přístupRNDr. Jiří Svoboda, CSc., DSc.
19-00408S Integrita a struktura materiálů v počátečních stádiích interakce s pulzujícím vodním paprskemprof. Mgr. Tomáš Kruml, CSc.
19-23411S Souhra plasticity a magnetismu v alfa-železe a chromudoc. Ing. Roman Gröger, Ph.D.
19-18725S Vliv mikrostruktury na creepové mechanismy v pokročilých žárupevných ocelíchIng. Petr Král, Ph.D.
19-25591Y Vliv mikrostruktury na únavové vlastnosti vysoce anisotropických nerezavějících ocelí vyrobených pomocí selektivního laserového táníIng. Miroslav Šmíd, Ph.D.

Ukončené projekty

Zobrazit

Řešené projekty



ČísloNázevŘešitel
TITSSUJB938 Metoda hodnocení integrity tlakové nádoby reaktoru JE VVER-1000 při těžké havárii spojené s tavením jaderného paliva.Ing. Petr Dymáček, Ph.D.
FW03010149 Návrh nové konstrukce kola pro nákladní přepravu s vyššími užitnými vlastnostmidoc. Ing. Pavel Hutař, Ph.D.
FW03010190 Pokročilé technologie přesného lití nových typů odlitků lopatek a lopatkových segmentů plynových turbín a turbodmychadel z moderních superslitin se zvýšenou životnostídoc. Ing. Pavel Hutař, Ph.D.
FW03010504 Vývoj in-situ technik pro charakterizaci materiálů a nanostrukturdoc. Ing. Luboš Náhlík, Ph.D.
CK02000025 Pokročilé svařované konstrukce pro zvýšení bezpečnosti v letectvíprof. Mgr. Tomáš Kruml, CSc.
TK03020089 Diagnostika poškození potrubních systémů metodou akustické emise pro odhady jejich zbytkové životnostiIng. Jiří Dvořák, Ph.D.
FW01010183 Nová generace integrace mikroskopie atomárních sil a elektronové mikroskopie (GEFSEM)doc. Ing. Luboš Náhlík, Ph.D.
TN01000071 Národní centrum kompetence Mechatroniky a chytrých technologií pro strojírenstvídoc. Ing. Pavel Hutař, Ph.D.
TN01000015 Národní centrum kompetence STROJÍRENSTVÍdoc. Ing. Luboš Náhlík, Ph.D.

Ukončené projekty

Zobrazit

Řešené projekty



ČísloNázevŘešitel
CZ.01.1.02/0.0/0.0/20_358/0023778 Korelativní měření magnetických vlastností povrchůdoc. Ing. Roman Gröger, Ph.D.
8J21AT002 Vliv vodíku na strukturu a funkční vlastnosti tvarově-paměťových slitin NiTiprof. RNDr. Antonín Dlouhý, CSc.
NU20-08-00149 Multicentrické hodnocení hypersenzitivní reakce u pacientů indikovaných k totální náhradě kloubu včetně hodnocení důvodů reimplanaceprof. RNDr. Antonín Dlouhý, CSc.
8J20AT013 Aspekty integrity a trvanlivosti kompozitů s recyklovaným plnivem (InDuRAC)doc. Ing. Jan Klusák, Ph.D.
FV40327 Automatizovaný optický systém pro měření dynamiky růstu trhlindoc. Ing. Pavel Hutař, Ph.D.
LTI19 Zapojení českých výzkumných organizací do Evropské aliance pro energetický výzkum EERA (EERA-CZ 2)doc. Ing. Luboš Náhlík, Ph.D.
8J19AT011 Half-Heuslerovy termoelektrické slitiny s vysokou entropií a s vysokou účinnostíRNDr. Jiří Buršík, CSc., DSc.
FV40034 Vývoj nového designu železničních náprav s vysokou provozní spolehlivostídoc. Ing. Luboš Náhlík, Ph.D.
8J18AT009 Iniciace porušování a lom kvazikřehkých stavebních materiálůIng. Lucie Malíková, Ph.D.
8J18AT008 Teorií vedený vývoj nových supermřížkových nanokompozitůMgr. Martin Friák, Ph.D.
COMET K2 A1.23 Fundamentals and tools for integrated computational modeling and experimental characterization of materials in the atomic to micrometer scale range (A1.23)RNDr. Jiří Svoboda, CSc., DSc.
PCCL-K1 K1-Center in Polymer Engineering and Sciencedoc. Ing. Pavel Hutař, Ph.D.

Ukončené projekty

Zobrazit