Institute of Physics of Materials AS CR, v. v. i. > Projects > Projects

Projects

Administration of projects from proposals to final stages provides the project team.

Running projects


Advanced modelling and characterization for power semiconductor materials and technologies (AddMorePower)

The development and integration of new materials for microelectronic semiconductor technologies was always crucially dependent on physical characterization techniques and predictive modelling. With the rapid and massive spread of power electronics, which enables both the digitalization and the electrification of our society on the one hand, and the generation and conversion of electrical energy needed for this transition on the other hand, completely new requirements arise for the conception and integration of semiconductor and interconnect materials. AddMorePower will provide the necessary characterization and modelling techniques that meet the particular needs of upcoming power semiconductor technology generations, which shall integrate and develop mono- and polycrystalline materials to an unprecedented extent. IPM activities will be devoted to the development of a physics-based modelling approach including anisotropic elasticity, plasticity, void formation and coalescence, and impurity and vacancy formation. The ambitious aim is to couple all effects and their interaction and implement them in a ready-to use simulation tool and provide the required material parameters to simulate the behaviour of the cooper layer during thermal loading.
 
The AddMorePower project has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No. 101091621.


Tailoring ODS materials processing routes for additive manufacturing of high temperature devices for aggressive environments (topAM)

Europe’s industry is facing many challenges such as global competition and the big change towards energy and resource efficiency. topAM can contribute to these demands by development and application of novel processing routes for new oxide-dispersoid strengthened (ODS) alloys on FeCrAl, Ni and NiCu basis. Novel ODS materials offer a clear advantage for the process industry by manufacturing e.g. topology-optimized, sensor-integrated high temperature devices (gas burner heads, heat exchangers) that are exposed to aggressive environments. Alloy and process development will be targeted by an advanced integrated computational materials engineering (ICME) approach combining computational thermodynamics, microstructure and process simulation to contribute to save time, raw materials and increase the component’s lifetime. Physical alloy production will be realized by combining nanotechnologies to aggregate ODS composites with laser-powder bed fusion and post-processing. The ICME approach will be complemented by comprehensive materials characterization and intensive testing of components under industrially relevant in-service conditions. This strategy allows to gain a deeper understanding of the processmicrostructure- properties relationships and to quantify the improved functionalities, properties and life cycle assessment. This will promote cost reduction, improved energy efficiency and superior properties combined with a significant lifetime increase. The consortium consists of users, materials suppliers and research institutes that are world leading in the fields relevant for this proposal, which guarantees efficient, high-level, application-oriented execution of topAM. The industrial project partners, in particular the SMEs, will achieve higher competitiveness due to their strategic position in the value chain of materials processing, e.g. powder production, to strengthen Europe's leading position in the emerging technology field of AM in a unique combination with ICME.
 
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958192.


Vlastnosti nanoprášků připravených pulzním elektronovým svazkem při nízkém tlaku plynu

The proposed project is focused on basic research with an impact on urgent biomedical applications. The development of new pharmaceutical products based on nanoparticles is a hot topic of current nanomaterial research. This effort is based on recent findings of serious toxicity of some agents currently used, and directed towards finding safer and more effective medical treatment using metal oxide nanoparticles, namely CeO2 for radiation oncology, Gd2O3 and MnO as contrast agents, ZnO and TiO2 as antitumor agents, Al2O3 and AgO as antibacterial agents, and Fe3O4/γFe2O3 for the hyperthermia treatment of cancer. The nanometric size and shape of nanoparticles are primarily responsible for their unique features; however, a surface quality (vacancies, defects) is equally important for the required properties. We suggest performing a fundamental experimental and theoretical study of the selected metal oxide nanopowders prepared using a unique physical method allowing for optimized nanopowder synthesis and modification of the surface for higher reactivity and increased biological activity.

Finished projects

Show

Running projects


Energy-saving ÚFM AV ČR, v.v.i., especially workshop buildings and electron microscopy

At the Institute of Physics of Materials AV ČR, v. v. i., the realization of the project "Energy-saving IPM CAS, especially workshop buildings and electron microscopy " was began. As part of the implementation of the project, energy-saving measures will take place, in particular the insulation of the workshop building's perimeter shell and electron microscopy, replacement of hole fillers, installation of new air ducts and upgrading of lighting. The project also includes the construction of the solar power plant on the main building.

Finished projects

Show

Running projects



Number of ProjectNameInvestigator
23-07235S Microstructural manipulation of austenitic steels by laser powder bed fusion techniqueIng. Miroslav Šmíd, Ph.D.
23-05372S Surface and subsurface erosion due to multiple droplet impingementIng. Jiří Man, Ph.D.
23-04746S Theory of magnetic systems in electric and electromagnetic fieldsdoc. RNDr. Ilja Turek, DrSc.
23-06167S High-temperature damage mechanisms in Ni-based superalloy fabricated by laser powder bed fusionIng. Ivo Kuběna, Ph.D.
22-28283S Oxide-induced crack closure and its implications for lifetime prediction of mechanical components (OXILAP)doc. Ing. Pavel Hutař, Ph.D.
22-05801S Causes and mechanisms of degradation of tin-based materials with a low content of alloying elementsMgr. Martin Friák, Ph.D.
22-22187S The theoretical and experimental study of the Al-Ge-Mg-Sn systems, application of novel 3rd generation data in CALPHAD-type thermodynamic modellingRNDr. Aleš Kroupa, CSc.
21-14886S Influence of material properties of high strength steels on durability of engineering structures and bridgesdoc. Ing. Stanislav Seitl, Ph.D.
21-24805S Tailoring of interfaces in lead-free ferroelectric-dielecric composites to enhance their electromechanical propertiesIng. Zdeněk Chlup, Ph.D.
21-08772S Influence of Self-Healing effects on structural fatigue life extension of structures made from high performance concrete (InShe)doc. Ing. Stanislav Seitl, Ph.D.
21-02203X Beyond properties of current top performance alloysRNDr. Jiří Svoboda, CSc., DSc.

Finished projects

Show

Running projects



Number of ProjectNameInvestigator
TN02000010 National Competence Centre of Mechatronics and Smart Technologies for Mechanical Engineeringdoc. Ing. Pavel Hutař, Ph.D.
TN02000018 National Centre of Competence ENGINEERINGdoc. Ing. Luboš Náhlík, Ph.D.
FW06010572 Development of testing machine (SPC 1300 DLS) for very high temperature (up to 1300°C) creep testing of miniature specimens according to EN 10371 – Metallic materials - small punch test methodIng. Petr Dymáček, Ph.D.
CK03000060 Advanced design methodology of railway axles for safe and efficient operationdoc. Ing. Luboš Náhlík, Ph.D.
TITSSUJB938 Metoda hodnocení integrity tlakové nádoby reaktoru JE VVER-1000 při těžké havárii spojené s tavením jaderného paliva.Ing. Petr Dymáček, Ph.D.
FW03010149 New wheel design for freight transport with higher utility propertiesdoc. Ing. Pavel Hutař, Ph.D.
FW03010190 Advanced precision casting technologies for new types of blade castings and blade segments of gas turbines and turbochargers from modern superalloys with increased service lifedoc. Ing. Pavel Hutař, Ph.D.
FW03010504 Development of in-situ techniques for characterization of materials and nanostructuresdoc. Ing. Luboš Náhlík, Ph.D.
CK02000025 Advanced welded structurus for enhanced operational safety in aviationprof. Mgr. Tomáš Kruml, CSc.
TK03020089 Acoustic Emission Diagnostics of Pipeline Systems Damage designed for Residual Life EstimationIng. Jiří Dvořák, Ph.D.

Finished projects

Show

Running projects



Number of ProjectNameInvestigator
8J23AT006 Synthesis and characterization of intermetallic supported nanoparticles.Mgr. Ondřej Zobač, Ph.D.
4000138900/22/NL/GP/gg Characterisation of Thermal and Mechanical Performance of SIM Cryostat Strapsdoc. Ing. Jan Klusák, Ph.D.
LUASK22219 Development of new joining methods for high entropy ceramicsprof. Ing. Ivo Dlouhý, CSc.
8J22AT008 Mechanical fracture quantification of role of hemp fibres on self-healing processes in selected composites (KvaRK)doc. Ing. Stanislav Seitl, Ph.D.
NU20-08-00149 Multicentric evaluation of hypersensitivity reactions in patients indicated for total joint replacement including evaluation of the reasons for reimplantingprof. RNDr. Antonín Dlouhý, CSc.

Finished projects

Show