Institute of Physics of Materials AS CR, v. v. i. > Projects > Damage mechanisms in multiaxial cyclic loading

Damage mechanisms in multiaxial cyclic loading

Investigatorprof. Mgr. Tomáš Kruml, CSc.
Number of Project15-08826S
AgencyGrantová agentura České republiky
Duration2014-12-31 - 2017-12-30

The project is focused on the study of fatigue damage mechanisms of 316L stainless steel under axial/torsional loading. Specimens will be cycled in proportional and 90° out-of-phase regimes. Dislocation structures formed during cycling will be identified using TEM with a special attention to the description of persistent slip bands where cyclic plastic deformation is localized. Evolution of surface relief will be characterized by SEM and AFM. Nucleation sites of small cracks, direction of growth and crack growth rate will be determined. The crack growth rate will be related to stress intensity factor at the crack tip and J-integral, calculated using FEM. The results will be compared with known cyclic behaviour of the material in uniaxial loading. The understanding of physical mechanisms of fatigue damage enables assessing the validity of the existing models for fatigue life prediction in multiaxial loading.


Polák J., Petráš R.: Cyclic plastic response and damage in superaustenitic steel in high temperature cycling with dwells and in thermomechanical cycling. Procedia Struct. Integr. 23 (2019) 275-280

Babinský T., Polák J.: Effective and internal stresses in 713LC and Rene 41 superalloys using analysis of the hysteresis loop shape. Procedia Struct. Integr. 23 (2019) 523-528


Mazánová V., Heczko M., Polák J.: Fatigue crack initiation and growth in 43Fe-25Ni-22.5Cr austenitic steel at a temperature of 700°C. Int. J. Fatigue 114 (2018) 11-21

Mazánová V., Polák J.: Initiation and growth of short fatigue cracks in austenitic Sanicro 25 steel. Fatigue Fract. Eng. Mater. Struct. 41 (2018) 1529-1545

Spätig P., Heczko M., Kruml T., Seifert H.: Influence of mean stress and light water reactor environment on fatigue life and dislocation microstructures of 316L austenitic steel. J. Nucl. Mater. 509 (2018) 15-28


Hutař P., Poduška J., Šmíd M., Kuběna I., Chlupová A., Náhlík L., Polák J., Kruml T.: Short fatigue crack behaviour under low cycle fatigue regime. Int. J. Fatigue 103 (2017) 207-215

Karol M., Chlupová A., Mazánová V., Kruml T.: Fatigue crack initiation and growth in 316L steel in torsional cyclic loading. Eng. Mech. 23 (2017) 434-437

Mazánová V., Polák J., Škorík V., Kruml T.: Multiaxial elastoplastic cyclic loading of austenitic 316L steel. Frattura ed Integrita Strutturale 11 (2017) 162-169

Mazánová V., Heczko M., Kuběna I., Polák J.: Surface Relief Formation in Relation to the Underlying Dislocation Arrangement. Solid State Phenom. 258 (2017) 526-529

Polák J., Mazánová V., Heczko M., Petráš R., Kuběna I., Casalena L., Man J.: The role of extrusions and intrusions in fatigue crack initiation. Eng. Fract. Mech. 185 (2017) 46-60

Heczko M., Spätig P., Seifert H., Kruml T.: Correlation between Dislocation Structures and Mechanical Fatigue Response of 316L Austenitic Steel Loaded with and without Mean Stress at High Temperature in Air and Water Environment. Solid State Phenom. 258 (2017) 534-537

Mazánová V., Škorík V., Kruml T., Polák J.: Cyclic response and early damage evolution in multiaxial cyclic loading of 316L austenitic steel. Int. J. Fatigue 100 (2017) 466-476


Weidner A., Kolmorgen R., Kuběna I., Kulawinski D., Kruml T., Biermann H.: Decomposition and Precipitation Process During Thermo-mechanical Fatigue of Duplex Stainless Steel. Metall. Mater. Trans. A 47 (2016) 2112-2124

Hutař P., Poduška J., Chlupová A., Šmíd M., Kruml T., Náhlík L.: Description of short fatigue crack propagation under low cycle fatigue regime. Procedia Struct. Integr. 2 (2016) 3009-3016

Kuběna I., Kruml T., Polák J.: Behaviour of ODS Steels in Cyclic Loading. Trans. Indian Inst. Metals 69 (2016) 309-313