Strength of an SOFC Electrolyte-Supported Cell

Alessia Masini, Filip Šiška, Zdeněk Chlup and Ivo Dlouhý

IPM, ASCR

CMCEE 2018 – 26 July 2018 Singapore

Introduction

Solid Oxide Cell (SOC) technology

2

Methodology

Flexural tests

Three-Point Bending

Ball-On-Three-Balls

Uni-axial Strength

Bi-axial Strength

Test setup

Load VS Displacement

CMCEE 2018 – July 26th Singapore

Three-Point Bending

	Tested side	σ_0 [MPa]	т
SOC0	Smooth	958.6 (878.7 1079.2)	3.1 (2.3 4.1)
	Rough	1016.2 (891.8 1154.0)	2.9 (2.2 3.8)
SOC1	Electrolyte	1083.7 (941.9 1242.1)	2.4 (1.9 3.1)
	GDC	698.5 (666.8 730.8)	8.6 (6.4 11.5)
SOC2	Fuel Electrode	479.9 (468.2 491.6)	16.6 (12.2 22.2)
	GDC	431.2 (415.5 447.0)	10.9 (8.0 14.5)
SOC3	Fuel electrode	271.4 (267.1 275.6)	25.4 (18.7 33.8)
	Air Electrode	309.1 (301.3 317.0)	18.3 (12.9 25.6)

SOC0	
SOC1	
SOC2	
SOC3	

- Continuous decrease in flexural strength
- Increase of *m* with increasing number of layers

• $\sigma_{SOC0} \approx 3 \sigma_{SOC3}$

Singapore

Three-Point Bending

6 r

5

4

Load [N] در

0

0.000

Finite Element Analysis

Force vs Displacement

٠

٠

٠

F = fracture force [N]

f = dimensionless factor

 $f = \sigma \cdot \frac{t^2}{F}$

t = thickness [mm]

F,σ

$$f = -0.018$$
 (F) + 2.39
Experimental fracture force

f for every sample

Typical fracture mechanism

Transitionfrominter-granulartotrans-granularcrack

Clear initiation point on the outer surface of the electrolyte

CMCEE 2018 – July 26th Singapore

B3B - Fractography

Typical fracture

Fracture initiating at the surface, in the layer and propagates through the

Exceptional fracture

causing fracture initiating in the

5x10 ³ X

B3B - Fractography

SOCO SOC1 SOC2

the electrolyte

Typical fracture mechanism

Fracture initiating at the surface, in the barrier layer and propagates through the electrolyte

SOC3

CMCEE 2018 – July 26th Singapore

B3B - Fractography

Typical fracture mechanism

Fracture **initiating at the interface** between the barrier layer and the fuel electrode

10 ⁴ X

Singapore

Conclusion

- Significant strength decrease
- B3B values higher than 3PB values
- Different effective volumes

The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 642557 and project "GrInHy – Green Industrial Hydrogen", grant number: 700300.

Thanks for

your attention